A Quantitative Measure for Retinal Blood Vessel Segmentation Evaluation
نویسندگان
چکیده
ISSN: 2186-1390 (Online) http://www.ijcvsp.com Abstract Analysis of retinal blood vessels allows us to identify individuals with the onset of cardiovascular diseases, diabetes and hypertension. Unfortunately, this analysis requires a specialist to identify specific retinal features which is not always possible. Automation of this process will allow the analysis to be performed in regions where specialists are non-existent and also large scale analysis. Many algorithms have been designed to extract the retinal features from fundus images. However, to date, these algorithms have been evaluated using generic image similarity measures without any justification of the reliability of these measures. In this article, we study the applicability of different measures for retinal vessel segmentation evaluation task. In addition, we propose an evaluation measure, F1, which is based on precision, recall and F-measure concept to deal with this evaluation task. An important property of F1 is its tolerance of small localization errors which often appear in a segmented image, but do not affect the desired retinal features. The performances of different measures are tested on both real and synthetic datasets which take into account the important properties of retinal blood vessels. The results show that F1 provides the greatest correlation to the desired evaluation measure in all experiments. Thus, it is the most suitable measure for retinal segmentation evaluation task.
منابع مشابه
Extracting Vessel Centerlines From Retinal Images Using Topographical Properties and Directional Filters
In this paper we consider the problem of blood vessel segmentation in retinal images. After enhancing the retinal image we use green channel of images for segmentation as it provides better discrimination between vessels and background. We consider the negative of retinal green channel image as a topographical surface and extract ridge points on this surface. The points with this property are l...
متن کاملEvaluation of Retinal Optic Disc Segmentation in Patients with Glaucoma and Comparison with Other Methods of Medical Image Processing
Introduction: Glaucoma is the most common cause of blindness in some countries. In the meantime, the field of retinal image processing has been proposed in order to provide automatic systems for disease diagnosis. Among the methods of medical image processing, image segmentation is a process of identification and change in the display of an image. The objective of this study was to use t...
متن کاملEvaluation of Retinal Optic Disc Segmentation in Patients with Glaucoma and Comparison with Other Methods of Medical Image Processing
Introduction: Glaucoma is the most common cause of blindness in some countries. In the meantime, the field of retinal image processing has been proposed in order to provide automatic systems for disease diagnosis. Among the methods of medical image processing, image segmentation is a process of identification and change in the display of an image. The objective of this study was to use t...
متن کاملVessel Delineation in Retinal Images using Leung-Malik filters and Two Levels Hierarchical Learning
Blood vessel segmentation is important for the analysis of ocular fundus images for diseases affecting vessel caliber, occlusion, leakage, inflammation, and proliferation. We introduce a novel supervised method to evaluate performance of Leung-Malik filters in delineating vessels. First, feature vectors are extracted for every pixel with respect to the response of Leung-Malik filters on green c...
متن کاملOn Supervised Methods for Segmentation of Blood Vessels in Ocular Fundus Images
Information about the retinal blood vessel network is important for diagnosis, treatment, screening, evaluation and the clinical study of many diseases such as diabetes, hypertension and arteriosclerosis. Automated segmentation and identification of retinal image structures had become one of the major research subjects in the fundus imaging and diagnostic ophthalmology. Automatic segmentation o...
متن کامل